

PLAN DIRECTEUR DE L'EAU

SUIVI DE LA QUALITÉ DE L'EAU 2024

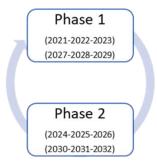
LAC TERREUR

TABLE DES MATIÈRES

INTRODUCTION	3
SURVOL DU PROGRAMME	3
PARAMÈTRES VISÉS	4
Phosphore (PT)	4
Carbone organique dissous (COD)	5
Chlorophylle A (Chla)	
Transparence de l'eau	
COORDONNÉES GÉOGRAPHIQUES DE LA STATION CIBLÉE SUR LE LAC TERREUR	7
PARAMÈTRES VISÉS À LA STATION	8
RÉSULTATS 2024	8
Transparence de l'eau	8
Suivi Physicochimique	9
RÉSULTATS ANTÉRIEURS	
INTERPRÉTATION DES DONNÉES 2024	1
CONCLUSION	12
RECOMMANDATIONS	13

INTRODUCTION

À la suite de l'adoption du Plan directeur de l'eau, le 5 mai 2020, la Municipalité de Val-des-Monts a débuté, en mai 2021, le suivi de la qualité de l'eau. Ce programme est divisé en deux phases d'une durée de trois ans chacune. La phase I a débuté en 2021 et s'est terminée l'année dernière, en 2023. Elle ciblait 47 lacs dans la Municipalité. La deuxième phase débutant en 2024 cible 44 lacs dont 10 nouveaux plans d'eau. Le programme étant dynamique a été ajusté pour permettre aux bénévoles de continuer à faire des suivis à leur souhait. La sélection des plans d'eau a été effectuée en fonction des forces anthropiques auxquelles ceux-ci sont assujettis. Les plans d'eau les plus susceptibles d'être soumis à des forces anthropiques par exemple, le développement domiciliaire, la présence de chemins et la proximité de terres agricoles ont été sélectionnés. La Municipalité a fait appel aux associations et aux riverains des plans d'eau visés afin de compter sur la participation de nombreux bénévoles et passionnés intéressés à contribuer au programme. Les bénévoles ont, par la suite, suivi une formation offerte par la Municipalité sur les procédures encadrant la collecte de données.


La Municipalité tient à remercier tous les bénévoles ayant participé de près ou de loin à la réalisation de la collecte de données. Leur grande participation a permis de compléter avec succès la phase I du programme et d'obtenir une quantité importante de données.

Dans ce rapport, nous présentons les données recueillies dans le cadre du programme pour le lac Terreur. Ce lac fait partie intégrante du bassin versant de la rivière du lièvre.

SURVOL DU PROGRAMME

Le programme a pour but d'obtenir un portrait adéquat de la qualité de l'eau, et ce, sur l'ensemble du territoire montvalois. Nous procédons en deux phases, chaque phase étant composée de 3 saisons d'échantillonnage.

Chaque saison d'échantillonnage comprend 3 relevés, soit aux mois de juin, juillet et août.

Les lacs échantillonnés au cours de la phase 1, si jugés stables, seront seulement assujettis à des relevés de transparence lors de la phase 2.

PARAMÈTRES VISÉS

La section qui suit contient les paramètres physicochimiques mesurés lors des suivis effectués en phase I. Les suivis réalisés lors des trois dernières saisons estivales comprennent trois séances d'échantillonnage, et ce, par saison. Chaque séance vise les quatre paramètres décrits suivants. Veuillez noter que des paramètres additionnels seront potentiellement ajoutés lors des suivis futurs.

Phosphore (PT)

Élément nutritif clé, indicateur de la croissance des algues et des plantes aquatiques, le phosphore se trouve généralement en faible concentration dans les lacs et cours d'eau présentant un niveau trophique oligotrophe. Bien que certaines sources de phosphore soient naturelles, une grande partie provient de sources anthropiques, c'est-à-dire, d'activités humaines. Certaines sources communes incluent, entre autres, l'érosion, la déjection animale, les engrais et fertilisants, les rejets d'eaux usées et certains produits domestiques. Une hausse en concentration de phosphore est directement reliée à un processus d'eutrophisation accéléré (eutrophisation anthropique).

L'eutrophisation est un processus naturel de vieillissement des lacs et cours d'eau. Ce processus naturel se déroule normalement sur une période de plusieurs milliers d'années. Cependant, lorsque ce processus est accéléré par de nombreuses activités humaines, celui-ci est raccourci à quelques centaines, voire des dizaines d'années. Lors du vieillissement d'un plan d'eau, la qualité de l'eau se détériore et des changements écosystémiques sont éventuellement perçus. Afin de faciliter l'analyse des plans d'eau, le processus d'eutrophisation est composé de trois niveaux trophiques soit, oligotrophe, mésotrophe et eutrophe.

Oligotrophe

- •Peu nourri (en matière nutritives).
- •Généralement profond, eaux claires, peu de matières organiques, productivité biologique faible.

▼ Mésotrophe

- •Augmentation des éléments nutritifs reçus (phosphore).
- •Augmentation de matières organiques, diminution de la transparence de l'eau.

- •Bien nourri (en matières nutritives).
- •Généralement peu profond, recouvert de végétations, riche en matières organiques, diminution de biodiversité.

Le graphique ci-dessous illustre le processus d'eutrophisation naturel ainsi que le processus d'eutrophisation anthropique.

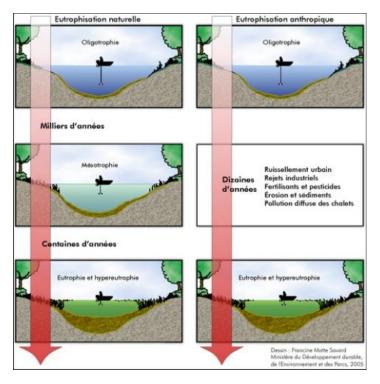


Figure 1 – RSVL, 2021

Carbone organique dissous (COD)

La concentration de carbone organique dissous (COD) dans un plan d'eau est un indicateur de la coloration et de la transparence de l'eau. Le COD provient majoritairement de la décomposition des organismes. Une corrélation négative existe entre la concentration de COD et la transparence de l'eau. En d'autres mots, lorsque la concentration de COD augmente, la transparence de l'eau diminue. Ce paramètre est également fortement relié au niveau de phosphore. Généralement, une augmentation de phosphore accélérera la croissance et la propagation des algues et plantes aquatiques. Cette augmentation en biomasse diminuera la transparence et, de ce fait, une augmentation de matières organiques en décomposition sera perçue. Cette augmentation sera représentée avec la lecture de COD. Alors qu'une augmentation en COD est perçue, une diminution d'oxygène dissous en profondeur peut être constatée, ce qui peut avoir des effets néfastes sur la biodiversité, la résistance et la résilience d'un plan d'eau.

Figure 2 – CRE Laurentides, 2016

Chlorophylle A (Chla)

La chlorophylle A est un indicateur de productivité. La concentration de celle-ci illustre l'abondance (biomasse) des algues et des matériaux microscopiques en suspension dans un lac. Une abondance trop élevée en chlorophylle A pourrait indiquer un surplus au niveau de l'enrichissement en matières nutritives des plantes, notamment le phosphore.

Transparence de l'eau

La transparence de l'eau est un indicateur de la quantité de matières organiques en suspension. Cette caractéristique est négativement corrélée à l'abondance de chlorophylle A (Chla), de carbone organique dissous (COD) et à la concentration de phosphore. En d'autres mots, lorsque la Chla, le COD et le phosphore augmentent, la transparence de l'eau est diminuée.

Changement dans la biodiversité Changement dans la biodiversité La biodiversité Augmentation de des algues et des plantes aquatiques en profondeur Augmentation de la quantité de matière organique à décomposer Augmentation de la transparence

LIEN DYNAMIQUE ENTRE LES PARAMÈTRES ANALYSÉS

Figure 3 – Lien dynamique entre les paramètres analysés, CRE Laurentides, 2009

COORDONNÉES GÉOGRAPHIQUES DE LA STATION CIBLÉE SUR LE LAC TERREUR Coordonnées géographiques approximatives de la Fosse Ter1 :

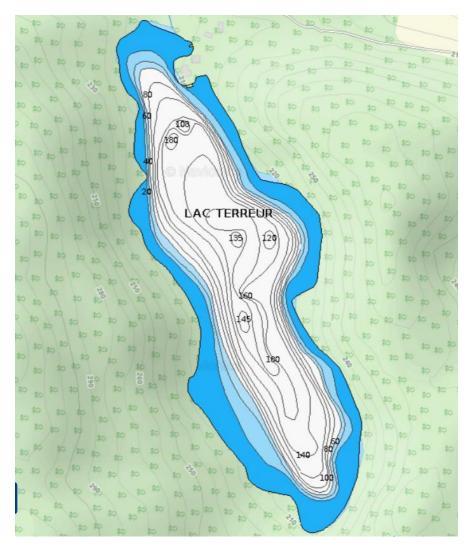


Figure 4 – Carte bathymétrique – Lac Terreur

PARAMÈTRES VISÉS À LA STATION

TE1: Phosphore total + Chlorophylle A + Carbone organique dissous + Transparence de l'eau

RÉSULTATS 2024

Transparence de l'eau

DATE	PROFONDEUR TEI (MÈTRES)	
2024-06-12	11.8	
2024-07-09	9	
2024-08-13	8.3	
Moyenne estivale	9.7	

Figure 5 – Résultats – Transparence de l'eau 2024 – Lac Terreur (Te1)

Suivi Physicochimique

STATION 1 - TE1

DATE	PHOSPHORE TOTAL (MICROG/L)	CHLOROPHYLLE A (MIGROG/L)	CARBONE ORGANIQUE DISSOUS (MG/L)
2024-06-12	1	2.6	3.4
2024-07-16	4.6	0.7	3.5
2024-08-13	1.02	0.87	2.1
Moyenne estivale	2.5	1.4	3

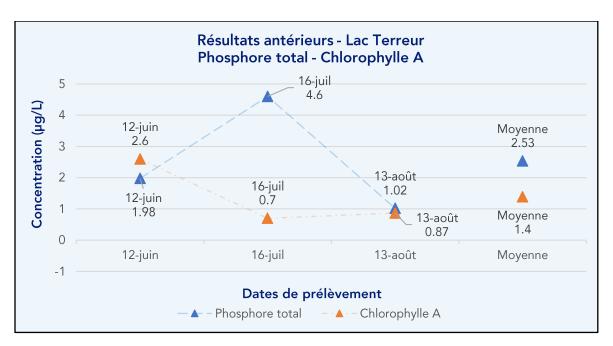


Figure 6 – Résultats – Suivi physicochimique 2024 (PT, Chla) – Lac

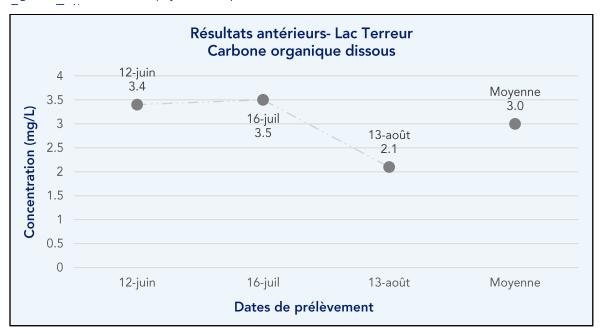


Figure 7 – Résultats – Suivi physicochimique 2024 (COD) – Lac Terreur (Te1)

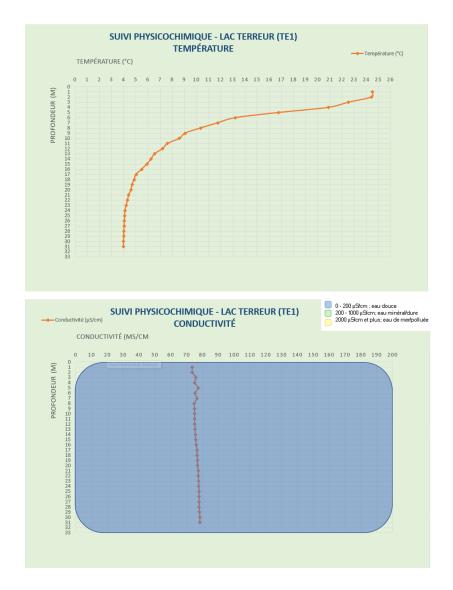
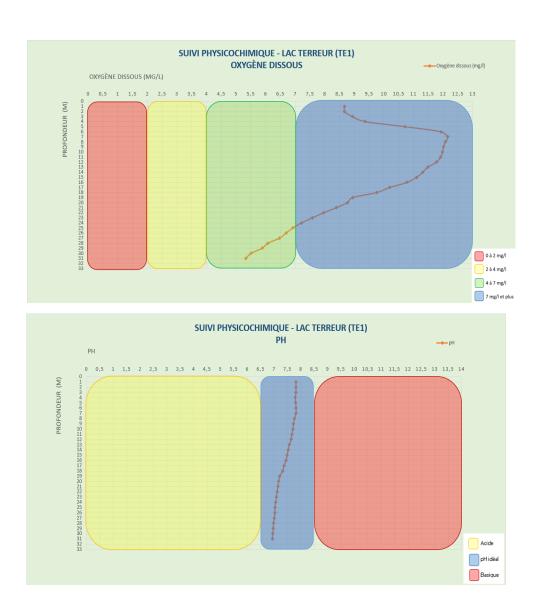



Figure 8 - Résultats – Profils physicochimiques 2024 - Lac Terreur (Te1)

À la suite de l'analyse des divers graphiques obtenus lors du profilage physicochimique présenté à la figure 8, nous ne notons aucune anomalie. Selon ce profil, l'oxygène reste abondant jusqu'à la profondeur maximum de la sonde utilisé, soit 31 mètres. Ce paramètre est très rare et pourrait avoir un impact positif sur la biodiversité du lac. Il est important de noter que ces valeurs représentent la situation dans le cours d'eau qu'au moment précis où l'analyse est effectuée, ce qui invalide toute comparaison ou évolution a proprement dite.

INTERPRÉTATION DES DONNÉES 2024

CLASSES DES NIVEAUX TROPHIQUES DES LACS AVEC LES VALEURS CORRESPONDANTES DE PHOSPHORE TOTAL, DE CHLOROPHYLLE A ET DE TRANSPARENCE DE L'EAU

CLASSE	PHOSPHORE TOTAL (µg/I)	CHLOROPHYLLE A (µg/I)	TRANSPARENCE (MÈTRE)
Ultra-oligotrophe	< 4	< 1	> 12
Oligotrophe	4 à 10	1 à 3	12 à 5
Oligo-mésotrophe	7 à 13	2,5 à 3,5	6 à 4
Mésotrophe	10 à 30	3 à 8	5 à 2,5
Méso-eutrophe	20 à 35	6,5 à 10	3 à 2
Eutrophe	30 à 100	8 à 25	2,5 à 1
Hyper-eutrophe	> 100	> 25	< 1

CLASSEMENTS DE LA CONCENTRATION EN CARBONE ORGANIQUE DISSOUS ET SON INCIDENCE SUR LA TRANSPARENCE DE L'EAU

	CARBONE ORGANIQUE DISSOUS (MG/L)	COULEUR	INCIDENCE SUR LA TRANSPARENCE
	< 3	Peu coloré	Très faible incidence
	≥ 3 < 4	Légèrement coloré	Faible incidence
Ī	≥ 4 < 6	Coloré	Incidence
Ī	≥ 6	Très coloré	Forte incidence

STATION 1 – LAC TERREUR (TEI)

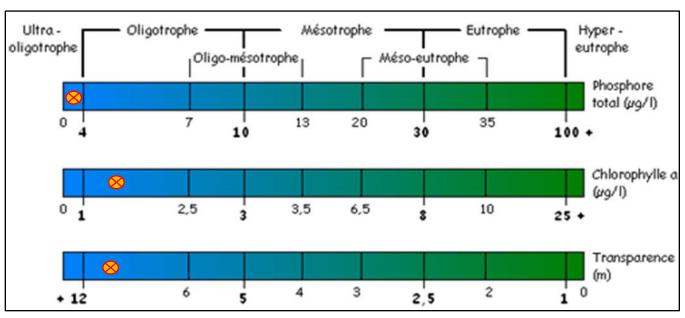


Figure 9 – État trophique 2024 – Station 1 – Lac Terreur (Te1)

CONCLUSION

SAISON 2024

Le lac Terreur compte 1 station de surveillance. Celle-ci présente une transparence moyenne estivale de 9.7 mètres. Cette transparence caractérise une eau très claire et situe l'état trophique du lac dans la zone trophique Oligotrophe. La concentration moyenne de chlorophylle A est de $1.4\,\mu g/l$, ce qui relève une eau dont la biomasse d'algues et de plantes microscopiques en suspension est faible. Ce paramètre situe le lac dans la zone trophique Oligotrophe. Dernièrement, la concentration moyenne de phosphore total mesuré est de $2.53\,\mu g/l$, ce qui indique que l'eau est très peu enrichie par cet élément nutritif. Cette variable indique que le plan d'eau se trouve à la zone de transition trophique Ultra-Oligotrophe.

Les variables physicochimiques de la station Te1 donnent des signaux discordants, mais l'état trophique du lac se situe vraisemblablement dans la zone trophique Oligotrophe, voir même Ultra-Oligotrophe.

Des données supplémentaires auront pour but de réduire la marge d'erreur des données présentées dans ce rapport.

RECOMMANDATIONS

Dans l'optique d'assurer une protection environnementale adéquate et de favoriser une bonne qualité de l'eau, il est recommandé d'adopter de bonnes pratiques environnementales. L'application de bonnes pratiques peut facilement prévenir les apports en matières nutritives, tels que le phosphore, ainsi que de prévenir l'ajout de matières nocives au milieu écologique.

Certaines bonnes pratiques incluent notamment:

- 1. Réduire les risques de contamination aux espèces aquatiques envahissantes en lavant ses embarcations nautiques.
- 2. Entretenir et faire l'inspection régulière de son installation septique.
- 3. Respecter l'intégrité de la bande riveraine.
- 4. Bonifier votre bande riveraine en faisant l'ajout de végétaux indigènes (permis requis).

La phase I démontre que le lac Terreur semble se situer vers la fin de la zone trophique Oligotrophe, le situant au tout début du processus d'eutrophisation. Il est donc recommandé de poursuivre assidûment l'application des bonnes pratiques, et ce, afin de prévenir un vieillissement accéléré.

Il est également important de noter qu'un encadrement réglementaire vise particulièrement les bandes riveraines et le littoral. Nous vous invitons à consulter le règlement de zonage portant le numéro 436-99 disponible sur le site Internet de la Municipalité de Val-des-Monts, afin de vous assurer de la conformité de votre bande riveraine.

POINTS RÉGLEMENTAIRES CLÉS EN CE QUI CONCERNE LA BANDE RIVERAINE

- a. Veuillez noter que l'utilisation ou l'aménagement d'un maximum de 5 mètres de large sur la rive, est permis par terrain. Aucune modification du couvert végétal n'est permise dans la rive, autre que l'aménagement de cet accès.
- b. Tous les travaux, activités, ouvrages ou constructions ayant pour effet de déposer ou d'extraire des matériaux, peu importe la nature ou le procédé, sont interdits sur la rive, le littoral et la plaine inondable.
- c. Aucune tonte de gazon n'est permise dans la rive, autre que dans l'accès de 5 mètres au plan d'eau.
- d. Aucune coupe d'arbres n'est permise dans la rive sans autorisation.
- e. Il est interdit d'utiliser de la machinerie lourde lors de l'aménagement de l'accès de 5 mètres de large au plan d'eau. Le sol doit être nivelé à la main seulement et l'ajout d'un maximum de 10 centimètres de pierres ou de roches naturelles est permis, tandis que le sable et le gravier ne sont pas permis.